INTRODUCTION

Throughout history, people have searched for medicines to treat various diseases and improve general health [Gavanji S et al., 2015; Akhtar M, 2022]. Herbal medicine has historically had a significant impact on human health. Their therapeutic effects have been able to treat a wide range of psychological to physical illnesses and promote general health and well-being [Gavanji S, Larki B, 2017; Sarris J, 2018]. Herbs are used in the therapeutic process majority and daily food preparation in modern society. Moreover, over 25% of current modern pharmaceuticals are made from natural resources [Anand U et al., 2019; Gavanji S et al., 2014; Zhang...]

Abstract

The use of medicinal plants is as old as human history. The adoption of plants in the prevention and treatment of diseases has maintained its position in various societies and cultures. Many people believe using medicinal herbs is not detrimental if there is no benefit.

In recent years, due to the tendency of people to increase the consumption of medicinal plants, extensive research has been carried out in the pharmaceuticals on the use of medicinal plants and their properties for the treatment of diseases.

Skin diseases are among the most common diseases in the world. Some of the most common skin disease symptoms are skin rashes, itchy skin, prominent bumps, peeling, blisters or sores, discoloration, etc. Since the skin plays a vital role as the first defense barrier of the body, skin diseases can cause dangerous problems for all age groups, from infants to the elderly.

Therefore, investigating the possible adverse effects of medicinal plants on the structure and function of the skin is of particular importance. Plants can cause side effects or reduce other pharmaceutical medication effects when improperly used.

According to studies, adverse skin responses to herbal medications can be caused by dermal contact or prolonged exposure to medicinal herbs. These reactions are also linked to several risk factors, such as adverse effects, dose, health state, and interactions.

This article reviews the findings and data available in articles published between 1953 and October 2022 on the skin side effects of medicinal plants in various databases, including Google Scholar, PubMed, and Scientific Information Database.

Keywords: adverse effect, allergic skin responses, side effect, medicinal herb.

CUTANEOUS ADVERSE REACTIONS TO HERBAL MEDICINES

Gavanji S.1, Baghshahi H.2*, Hamami Chamgordani Z.3

1 Department of Biotechnology, Faculty of Advanced Sciences and Technologies, Isfahan University of Medical Sciences, Isfahan, Iran
2 Barij Medicinal Plants Research Center, Kashan, Iran
3 Department of Adult Health Nursing, Faculty of Nursing and Midwifery, Isfahan University of Medical Sciences, Isfahan, Iran

Received 16.11.2022; accepted for printing 10.01.2023

ABSTRACT

The use of medicinal plants is as old as human history. The adoption of plants in the prevention and treatment of diseases has maintained its position in various societies and cultures. Many people believe using medicinal herbs is not detrimental if there is no benefit.

In recent years, due to the tendency of people to increase the consumption of medicinal plants, extensive research has been carried out in the pharmaceuticals on the use of medicinal plants and their properties for the treatment of diseases.

Skin diseases are among the most common diseases in the world. Some of the most common skin disease symptoms are skin rashes, itchy skin, prominent bumps, peeling, blisters or sores, discoloration, etc. Since the skin plays a vital role as the first defense barrier of the body, skin diseases can cause dangerous problems for all age groups, from infants to the elderly.

Therefore, investigating the possible adverse effects of medicinal plants on the structure and function of the skin is of particular importance. Plants can cause side effects or reduce other pharmaceutical medication effects when improperly used.

According to studies, adverse skin responses to herbal medications can be caused by dermal contact or prolonged exposure to medicinal herbs. These reactions are also linked to several risk factors, such as adverse effects, dose, health state, and interactions.

This article reviews the findings and data available in articles published between 1953 and October 2022 on the skin side effects of medicinal plants in various databases, including Google Scholar, PubMed, and Scientific Information Database.
An issue of concern to health authorities in various societies is the side effects of self-medication with herbal medicines, as many people believe that herbal medicines have few side effects. [Abdelmola A et al., 2021; Okaiyeto K, Oguntibeju O, 2021]

According to estimates, about 70 to 80 percent of the world’s population needs (wholly or in part) plant-based medications for their primary medical treatment. [Ernst E, 2003]. Self-medication is related to several factors, such as accessibility, deceptive advertising, and incorrect and unfounded beliefs. [Ekor M, 2014; Faerber A, Kreling D, 2014].

Some people have the misconception that using herbal remedies for self-medication is a cost-effective treatment option for curing various diseases. Nevertheless, it can impose a significant financial burden and delay seeking and receiving appropriate medical care. [Akhtar M, 2022]. Patients remain to face the potential for dangerous disease and misdiagnosis. [Ruiz M, 2010]. One of the main risks associated with the potentially toxic effects of self-treatment is the prescription of medicinal herbs by unqualified practitioners without proper medical training in traditional medicine and clinical practice, which can cause serious harm to the body. On the other hand, improper use of herbal remedies can raise a variety of undesirable consequences and alter the efficacy of more widely used pharmaceuticals, leading to a variety of unanticipated unpleasant and dangerous outcomes. [Hu Z et al., 2005; Ruiz M, 2010; Fatima N, Nayeem N, 2016]. Self-medication with herbal medicines can have negative dermatological consequences, from minor to severe. [Akhtar M, 2022].

Skin disorders such as skin irritations, allergies, and rashes that can be caused by exposure to toxic plants, chemicals, or other environmental elements are referred to as dermatotoxic conditions. [Matsunoto K, Satoda T, 2008; Ernst E, 2000; Anderson S, Meade, B, 2014]. Herbs used improperly can have various negative consequences, including allergic contact dermatitis, irritant contact dermatitis and allergic skin responses. [Gavanji S et al., 2014; Zhang J et al., 2015]. Some of these disorders need medical attention and hospitalization. [Gavanji S, Larki B, 2017; Anand U et al., 2019; Akhtar M, 2022].

Various studies have shown that cutaneous adverse responses to herbal remedies can result from dermal contact with toxic plants or from prolonged exposure that is not immediate and linked to several risk variables, including harmful effects, dose, health condition, and interactions. This review article renders correlated information about the cutaneous adverse reactions to herbal medicines.

Material and methods

All reports on skin responses and skin toxicological risks associated with herbal medicines were collected for this overview from relevant articles published between 1953 and October 2022 in various databases, including Google Scholar, PubMed, and Scientific Information Database. Searches using the numerous combinations of keywords were skin toxicity, side effects, herbal medicines, and toxicology. Search includes title, abstract, keywords, and full text. In this article, selected documents and books have been used according to specific details to present the potential adverse effects of herbal medicine, which induce skin toxicity.

Results

Asteraceae: The _Asteraceae_, or sunflower family, which has a long history in traditional Chinese medicine and comprises hundreds of plants, is crucial in treating ailments. Studies have shown that 20 members of the _Asteraceae_ family can be harmful to the skin. Skin sensitivity can be caused by three different Artemisia species, including _A. annua_, _A. vulgaris_, and _A. afra_. According to a study, 50 patients who had been exposed to _A. annua_ extract had a positive reaction and allergic rhinitis. [Ma R et al., 2000]. A case report study stated that a patch test of mugwort or _A. vulgaris_ extract induced allergic contact dermatitis. [How S et al., 2010]. _A. afra_ causes irritant contact dermatitis. [Otang W et al., 2014]. _Arnica montana_, a different plant from the _Asteraceae_ family, has been used by homeopaths to treat various diseases. [Stevinson C et al., 2003]. _A. montana_ has been linked to dermatitis in studies by...
The sunflower family also contains the medicinal plant Cynara scolymus (C. scolymus), which has anti-inflammatory, anti-hyperglycemic, and antioxidant properties [Ben Salem M et al., 2017]. According to a finding of the study, long-term direct contact with plants can cause contact dermatitis in individuals who handle food and sell vegetables. This study showed that a 44-year-old man who sold vegetables was exposed to C. scolymus and developed contact dermatitis [Meding B, 1983]. In order to prevent skin allergies, it is necessary to wear gloves in jobs that may cause occupational dermatitis. Lactuca sativa, a member of the Asteraceae family, is one of the most widely consumed and significant vegetables. Based on a study, L. sativa can cause occupational dermatitis and intense itching [Krook G, 1977]. Chamomilla recutita (C. recutita), chamomile, is a medicinal plant of the Asteraceae family, which is used as a traditional and favorable drink to treat various diseases. A case report research showed that C. recutita (chamomile tea) when consumed and exposed to the vapor of hot teas, caused airborne contact dermatitis in a 75-year-old woman [Anzai A et al., 2015]. Another ornamental plant from the Asteraceae family that has historically been used to treat viral infections is chrysanthemum morifolium (C. morifolium) [Youssef F et al., 2020; Liu X et al., 2022]. Researchers have reported that exposure to C. morifolium may induce contact dermatitis [Sharma S et al., 1989]. A research study stated that a 60-year-old woman who worked as a farmer in the garden had suffered a strong reaction and eczema because of contact with C. morifolium flowers [Aberer W, Jarisch R, 1987]. Two other medicinal plants with various medicinal properties which belong to the Asteraceae family are Tagetes minuta (T. minuta) and Tagetes indica (T. indica) (Table). Based on a study, the extract of T. minuta can induce sensitization and contact dermatitis [Verhagen A, Nyaga J, 1974]. Moreover, research dating 1989 showed that T. indica airborne contact dermatitis [Sharma S, Kaur S, 1989]. As a result, it is crucial to use caution and only under a doctor’s supervision when consuming natural products and medicinal plants. Dittrichia viscosa (D. viscosa), which has been used to treat wounds, is a valuable plant in cure wounds [Mssillou I et al., 2022]. Fresh leaves of the D. viscosa induced contact dermatitis, according to Gonçalo and Gonçalo [Gonçalo M, Gonçalo S, 1991]. Inula helenium (I. helenium) is a different Asteraceae-family medicinal plant that has long been used to treat respiratory and infectious diseases, as well as diarrhea [Buza V et al., 2022]. The findings of a study suggested that liniment of I. helenium extract could lead to contact dermatitis [Pazzaglia M et al., 1995]. The Asteraceae plant Heliumium autumnale (H. autumnale), sometimes known as sneezeweed, is another species having antibacterial capabilities [Mukku V et al., 2013]. Guin J. (1987) demonstrated that H. autumnale might induce dermatitis. Parthenium hysterophorus (P. hysterophorus) is a plant of the Asteraceae family, which has been used in folk medicine to treat skin infections in central America and the Caribbean [Kaur L et al., 2021]. Based on a study, P. hysterophorus can cause airborne contact dermatitis in 78 percent of patients [Sharma S, Kaur S, 1989]. One of the popular plants within Europe and other countries with anti-inflammatory and antimicrobial properties is Solidago virgaurea.
<table>
<thead>
<tr>
<th>Plant name</th>
<th>Family</th>
<th>Potential therapeutic application (Traditional medicine)</th>
<th>Type of adverse effect</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anacardium occidentale</td>
<td>Anacardiaceae</td>
<td>Antihypertensive, therapeutic effect on the eyes and skin</td>
<td>Itching, fissuring and exudative lesions</td>
<td>[Pasricha J et al., 1988]</td>
</tr>
<tr>
<td>Apium graveolens</td>
<td>Brassicaceae</td>
<td>Prevention of cardiovascular disease, antiproliferative effect</td>
<td>Acute irritant contact dermatitis</td>
<td>[Ermertcan AT et al., 2007]</td>
</tr>
<tr>
<td>Artemisia annua</td>
<td>Asteraceae</td>
<td>Malaria treatment</td>
<td>Allergic rhinitis</td>
<td>[Tung R et al., 2015]</td>
</tr>
<tr>
<td>Artemisia vulgaris</td>
<td>Asteraceae</td>
<td>Antioxidant, anti-inflammatory, anticancer, Allergic contact dermatitis and antimicrobial properties</td>
<td></td>
<td>[Haw S et al., 2010]</td>
</tr>
<tr>
<td>Artemisia afra</td>
<td>Asteraceae</td>
<td>Treat various disorders including coughs, colds, influenza, and malaria</td>
<td>Allergic contact dermatitis</td>
<td>[Otang WM et al., 2014; Du Toit A, Van der Kooy F, 2019]</td>
</tr>
<tr>
<td>Allium sativum</td>
<td>Amaryllidaceae</td>
<td>Treat of cancer, blood pressure, atherosclerosis, and hyperlipidemia</td>
<td>Allergic contact dermatitis</td>
<td>[Otang WM et al., 2014]</td>
</tr>
<tr>
<td>Alstroemeria</td>
<td>Alstroemeriaceae</td>
<td>No medicinal uses listed</td>
<td>Contact dermatitis</td>
<td>[Rycroft R, Cahn C, 1981; Santucci B et al., 1985; Marks JG, 1988]</td>
</tr>
<tr>
<td>Aloe vera</td>
<td>Xanthorrhoeaceae</td>
<td>Immunomodulatory, wound and burn healing, antitumor, gastro-protective</td>
<td>Severe prolonged allergic dermatitis</td>
<td>[Hunter D, Frumkin A, 1991]</td>
</tr>
<tr>
<td>Brassica oleracea</td>
<td>Brassicaceae</td>
<td>Cancer treatment</td>
<td>Allergic contact dermatitis</td>
<td>[Hermansides H et al., 2006; Palacin A et al., 2006]</td>
</tr>
<tr>
<td>Cichorium endivia</td>
<td>Asteraceae</td>
<td>Treat of bilious complaints</td>
<td>Contact dermatitis</td>
<td>[Krook G, 1977; Malten K, 1983]</td>
</tr>
<tr>
<td>Cichorium intybus</td>
<td>Asteraceae</td>
<td>Treat of various ailments ranging from wounds to diabetes</td>
<td>Allergic reaction</td>
<td>[Paulsen E, 2017]</td>
</tr>
<tr>
<td>Citrus limon</td>
<td>Rutaceae</td>
<td>Treat of sore throats, fevers, rheumatism, high blood pressure, chest pain</td>
<td>Contact dermatitis</td>
<td>[Cardullo AC et al., 1989; Alessandrello C et al., 2021]</td>
</tr>
<tr>
<td>Cynara scolymus</td>
<td>Asteraceae</td>
<td>Treat of stomach tonic, cholagogue, fever, liver disorders</td>
<td>Allergic contact dermatitis</td>
<td>[Meding B, 1983]</td>
</tr>
<tr>
<td>Chamomilla recutita</td>
<td>Asteraceae</td>
<td>Anti-inflammatory effects</td>
<td>Contact dermatitis</td>
<td>[Anzai A et al., 2015]</td>
</tr>
<tr>
<td>Chrysanthenum morifolium</td>
<td>Asteraceae</td>
<td>Antinflammatory, antipyretic, sedative, antiarthritic, and antihypertensive</td>
<td>Contact dermatitis</td>
<td>[Aberer W, Jarisch R, 1987; Sharma S et al., 1989]</td>
</tr>
<tr>
<td>Daucus carota</td>
<td>Apiaceae</td>
<td>Treat wound, cardiovascular disorders, antispasmodic activity</td>
<td>Allergic contact dermatitis</td>
<td>[Kawai M et al., 2014]</td>
</tr>
<tr>
<td>Dittrichia viscosa</td>
<td>Asteraceae</td>
<td>Cancer treatment</td>
<td>Allergic contact dermatitis</td>
<td>[Gonçalo M, Gonçalo S, 1991]</td>
</tr>
<tr>
<td>Dahlia pinnata</td>
<td>Asteraceae</td>
<td>Treat epilepsy, skin problems such as rashes, cracks and soothe tired feet</td>
<td>Contact dermatitis</td>
<td>[Sharma S, Kaur S, 1990]</td>
</tr>
<tr>
<td>Eriodictyon parryi</td>
<td>Namaceae</td>
<td>Neuroprotective activity and treatment of Alzheimer’s disease (AD)</td>
<td>Contact dermatitis</td>
<td>[Czaplicki CD, 2013]</td>
</tr>
<tr>
<td>Eucalyptus pulverulenta</td>
<td>Myrtaceae</td>
<td>Reduce symptoms of coughs, colds, and congestion</td>
<td>Contact dermatitis</td>
<td>[Gyldenløve M et al., 2014; Higgins C et al., 2015; Paulsen E et al., 2018; Hashimoto T, Yokozeki H, 2019]</td>
</tr>
</tbody>
</table>
Table 1.
Cutaneous adverse reactions (SCAR) to herbal medicines

<table>
<thead>
<tr>
<th>Plant name</th>
<th>Family</th>
<th>Potential therapeutic application (Traditional medicine)</th>
<th>Type of adverse effect</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frullania dilatata</td>
<td>Jubulaceae</td>
<td>Antiseptic</td>
<td>Contact dermatitis</td>
<td>[Quirce S et al., 1994]</td>
</tr>
<tr>
<td>Frullania tamarisci</td>
<td>Jubulaceae</td>
<td>Antiseptic</td>
<td>Contact dermatitis</td>
<td>[Quirce S et al., 1994]</td>
</tr>
<tr>
<td>Ginkgo biloba</td>
<td>Ginkgoaceae</td>
<td>Treat of asthma and other respiratory problems, infectious diseases</td>
<td>Contact dermatitis</td>
<td>[Lepoittevin J-P et al., 1989; Castelli D et al., 1998]</td>
</tr>
<tr>
<td>Grevillea robusta</td>
<td>Proteaceae</td>
<td>Treat sore throats, earache, chest problems</td>
<td>Contact dermatitis</td>
<td>[Tully J, Woodruff CM, 2022]</td>
</tr>
<tr>
<td>Grevillea banksii</td>
<td>Proteaceae</td>
<td>No medicinal uses listed</td>
<td>Contact dermatitis</td>
<td>[Lothian N, 1989]</td>
</tr>
<tr>
<td>Grevillea hookeriana</td>
<td>Proteaceae</td>
<td>Antimicrobial activity</td>
<td>Contact dermatitis</td>
<td>[Lothian N, 1989]</td>
</tr>
<tr>
<td>Helenium autumnale</td>
<td>Asteraceae</td>
<td>Antipyretic</td>
<td>Contact dermatitis</td>
<td>[Guin JD, 1987; Foster S, Duke JA, 2000]</td>
</tr>
<tr>
<td>Hevea brasiliensis</td>
<td>Euphorbiaceae</td>
<td>Antimicrobial activity</td>
<td>Itching and dermatitis</td>
<td>[Pumphrey R, 1994]</td>
</tr>
<tr>
<td>Inula helenium</td>
<td>Asteraceae</td>
<td>Treat of respiratory, digestive problems</td>
<td>Contact dermatitis</td>
<td>[Pazzaglia M et al., 1995]</td>
</tr>
<tr>
<td>Juglans regia</td>
<td>Lamiaceae</td>
<td>Treat of helminthiasis, diarrhea, sinusitis, stomachache, arthritis, asthma</td>
<td>Irritant contact dermatitis</td>
<td>[Corazza M et al., 2019]</td>
</tr>
<tr>
<td>Lactuca sativa</td>
<td>Asteraceae</td>
<td>Treat of pain, inflammation, stomach problems</td>
<td>Contact dermatitis</td>
<td>[Krook G, 1977]</td>
</tr>
<tr>
<td>Laurus nobilis</td>
<td>Lauraceae</td>
<td>Treat of digestive disease</td>
<td>Allergic contact dermatitis</td>
<td>[Paulsen E, 2017]</td>
</tr>
<tr>
<td>Mangifera indica</td>
<td>Anacardiaceae</td>
<td>Antiseptic, astringent, diaphoretic, stomachic, verruca, tonic, laxative</td>
<td>Allergic reaction, skin irritation</td>
<td>[Oka K et al., 2004]</td>
</tr>
<tr>
<td>Parthenium hysterophorus</td>
<td>Asteraceae</td>
<td>Treat of skin infections, dermatitis, amoebic dysentery</td>
<td>Contact dermatitis</td>
<td>[Sharma S, Kaur S, 1989]</td>
</tr>
<tr>
<td>Primula obconica</td>
<td>Primulaceae</td>
<td>Treat of liver disorders</td>
<td>Contact dermatitis</td>
<td>[Fernandez de Corres L et al., 1987]</td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td>Lamiaceae</td>
<td>Treat of headache, dysmenorrhea, stomachache, epilepsy, rheumatic pain</td>
<td>Contact dermatitis</td>
<td>[Miroddi M et al., 2014]</td>
</tr>
<tr>
<td>Solidago virgaurea</td>
<td>Asteraceae</td>
<td>Treat of wounds</td>
<td>Contact dermatitis</td>
<td>[Minciullo PL et al., 2017]</td>
</tr>
<tr>
<td>Smidjingium argutum</td>
<td>Anacardiaceae</td>
<td>Antimycobacterial and anti-inflammatory efficacy</td>
<td>Allergic contact dermatitis</td>
<td>[Heyl T et al., 1987]</td>
</tr>
<tr>
<td>Toxicodendron vernix</td>
<td>Anacardiaceae</td>
<td>No medicinal uses listed</td>
<td>Allergic contact dermatitis</td>
<td>[Fyfe S et al., 2020]</td>
</tr>
<tr>
<td>Toxicodendron toxicarum</td>
<td>Anacardiaceae</td>
<td>No medicinal uses listed</td>
<td>Allergic contact dermatitis</td>
<td>[Fyfe S et al., 2020]</td>
</tr>
<tr>
<td>Toxicodendron radicans</td>
<td>Anacardiaceae</td>
<td>No medicinal uses listed</td>
<td>Allergic contact dermatitis</td>
<td>[Fyfe S et al., 2020]</td>
</tr>
<tr>
<td>Toxicodendron verniciflua</td>
<td>Anacardiaceae</td>
<td>Antioxidant, anti-inflammatory and anti-cancer activities</td>
<td>Allergic contact dermatitis</td>
<td>[Fyfe S et al., 2020]</td>
</tr>
<tr>
<td>Tagetes minuta</td>
<td>Asteraceae</td>
<td>Anti-inflammatory activity</td>
<td>Contact dermatitis</td>
<td>[Verhagen AR, Nyaga JM, 1974]</td>
</tr>
<tr>
<td>Tagetes indica</td>
<td>Asteraceae</td>
<td>Treat of digestive problems</td>
<td>Contact dermatitis</td>
<td>[Sharma S, Kaur S, 1989]</td>
</tr>
<tr>
<td>Tanacetum parthenium</td>
<td>Asteraceae</td>
<td>Treat of fevers, migraine headaches, rheumatoid arthritis, stomach aches</td>
<td>Contact dermatitis</td>
<td>[Hashimoto T, Yokozeki H, 2019]</td>
</tr>
</tbody>
</table>
(S. virgaurea), which has been used to treat kidney disorders [Fursenco C et al., 2020]. Minciullo P. and co-authors (2017) demonstrated that S. virgaurea could cause contact dermatitis. Tanacetum parthenium, also known as feverfew, belongs to the Asteraceae family and is used in natural drugs for various diseases treatment. Hashimoto T. and Yokozeki H. (2019) reported that T. parthenium could induce contact dermatitis.

Anacardiaceae: The Anacardiaceae family of flowering plants exhibits a wide range of pharmacological properties. This family comprises about 700 species [Montanari R et al., 2012]. A group of plants belonging to the Toxicodendron genus, that four plants of this genus, including T. vernix, T. toxicarium, T. radicans, and T. vernicifluum, can induce skin allergies [Fyfe S et al., 2020; Monroe J. 2020]. Another important species of the Anacardiaceae family is Anacardium occidentale (A. occidentale), that is widely used in traditional medicine to treat inflammatory diseases [Siracusa R et al., 2020]. A. occidentale caused occupational contact sensitization as a result of working in the nut factory [Pasricha J et al., 1988]. Mangifera indica (M. indica), also known as mango, is a popular fruit with a spectrum of medicinal possibilities [Mirza B et al., 2021]. M. indica has been shown to cause contact dermatitis in sensitive individuals [Oka K et al., 2004]. Smoedingium argutum (S. argutum), another member of this family, is linked to multiple severe allergic responses. According to Heyl T. and co-authors (1987) S. argutum can cause acute allergic contact dermatitis.

Apiaceae: The herbal remedy Daucus carota (D. carota), often known as the wild carrot, is a member of the Apiaceae family and has a long history of use in traditional medicine to treat different ailments [Molkara T et al., 2018]. A study stated that D. carota could induce sensitization and contact dermatitis [Kawai M et al., 2014].

Alstroemeria: An ornamental flowering plant known as an alstroemeria, also known as a lily, belongs to the Alstroemeriae family. Numerous studies have shown that Peruvian lily can lead to occupational allergies and contact dermatitis [Rycroft R, Calnan C. 1981; Santucci B et al., 1985; Marks J. 1988].

Amaryllidaceae: Garlic, also known as Allium sativum (A. sativum), is a significant medicinal plant that is a member of the Amaryllidaceae family and is frequently used to treat coughs, colds, tuberculosis, and a variety of other illnesses. A. sativum may be responsible for contact dermatitis, based on a report [Otagh W et al., 2014].

Brassicaceae: One of the remarkable medicinal plants containing high amounts of phenolic compounds and antioxidants is Apium graveolens (A. graveolens), which belongs to the Brassicaceae family. The result of a case report study showed that A. graveolens could induce acute irritant contact dermatitis [Ermerhtcan A et al., 2007]. Another plant of this family is Brassica oleracea which has been widely used for treating various diseases, including cancer, infectious disease, and diabetes. Several studies have shown that this plant can induce occupational allergens [Hermanides H et al., 2006; Palacin A et al., 2006].

Euphorbiaceae: Hevea brasiliensis, a member of the Euphorbiaceae family and popularly referred to as the rubber plant, is used to make furniture and other products. Pumphrey R. (1994) stated that Hevea latex could induce Allergy.

Ginkgoaceae: A plant known as ginkgo biloba has long been utilized in traditional medicine to treat various illnesses. According to research, ginkgo biloba could lead to allergic contact dermatitis [Lepoittevin J et al., 1989; Castelli D et al., 1998].

Jubulaceae: Frullania dilatata and Frullania tamarisci are two species of the Jubulaceae family that can induce allergic reactions and airborne contact dermatitis [Quire S et al., 1994].

Lamiaceae: Rosmarinus officinalis (R. officinalis) is a valuable species of the Lamiaceae family which has been traditionally used in the treatment of hysteria, depression, rheumatic pain, stomachache, headache, and infectious diseases [Rahbardar M, Hosseinzadeh H. 2020]. Miroddi M. and colleagues (2014) suggested that R. officinalis may cause contact dermatitis. Another plant of the Lamiaceae family is Juglans regia (J. regia), which has various therapeutic effects on different diseases. A research study stated that extract of J. regia leaves induces contact dermatitis [Corazza M et al., 2019].

Lauraceae: Laurus nobilis (L. nobilis), a member of the Lauraceae family of ornamental plants, has been grown in various countries. Research revealed that L. nobilis may be the etiology of contact dermatitis [Paulsen E., 2017].
Myrtaceae: A member of the Myrtaceae family called Eucalyptus pulverulenta, often known as silver-leaved mountain gum, can lead to contact dermatitis [Gyldenløve M et al., 2014; Higgins C et al., 2015; Paulsen E et al., 2018; Hashimoto T, Yokozeki H, 2019].

Namaceae: Poodle-dog bush Eriodictyon parryi, which is a member of the Namaceae family, can cause contact dermatitis [Czaplicki C, 2013].

Primulaceae: Primula obconica (P. obconica) is a flowering plant that belongs to the Primulaceae family and is frequently grown for decorative purposes. It was shown that P. obconica elicited contact dermatitis [Fernandez de Corres L et al., 1987].

Proteacea: Three main Proteacea species that are proposed as decorative plants are Grevillea robusta, Grevillea banksii, and Grevillea hookeri. Some investigations have concluded that Grevillea species can induce contact dermatitis [Lothian N, 1989; Tully J, Woodruff C, 2022].

Rutaceae: Lemon is a member of the Rutaceae family and is also known as citrus limon (C. limon). It has long been used to cure numerous illnesses. According to several studies, C. limon can cause allergic contact dermatitis [Cardullo A et al., 1989; Alessandrello C et al., 2021].

Xanthorrhoeaceae: Aloe vera or Aloe barbadensis is an important medicinal plant and a member of the Xanthorrhoeaceae family, which has been used in folk medicine to treat various diseases such as malaria, fever, abdominal pains, arthritis, and infectious diseases [Adams K et al., 2014]. Hunter D. and Frumkin A. (1991) displayed that Aloe vera gel may induce an adverse reaction on the skin and cause severe prolonged allergic dermatitis.

Conclusion

The use of medicinal plants and herbal products is widespread in the health system of many countries throughout the world. Additionally, one of the biggest threats to the health system is the widespread belief that using medicinal herbs is beneficial and safe because of their naturalness. Several studies suggest that several plants used for therapeutic and medical purposes might seriously harm users or exacerbate existing illnesses. Many plants are contaminated with chemical pesticides, heavy metals, and fungal contaminations during the cultivation and exploitation process. Finally, according to the existence of standard procedures and system requirements in herbal medicine manufacturing companies, it seems necessary to use authentic herbal medicines.

References

77. **Sharma S, Kaur S**, (1990), Contact dermatitis from Dahlia pinnata. Contact Derm. 23(3): 204-205. DOI: 10.1111/j.1600-0536.1990.tb04797.x

CONTENTS

 Knowledge and Awareness of Early Stroke Signs: An Analytical Review

11. Gavanji S., Baghshahi H., Hamami Chamgordani Z.
 Cutaneous Adverse Reactions to Herbal Medicines

22. Sargsyan M.V., Galstyan S.G.
 The Role of Hormonal Changes in Adaptation Disorders of Young Systems
 in the Course of Community-Acquired Pneumonia

 Vitamin D Status in a Case Series of Armenian Population: One Center Cohort Data

 Features of the Course and Outcome of Pregnancy in Women with COVID-19

 Hepatic Multiple Hyperintense Cystic Lesions: A Rare Caroli Disease.

46. Balkić Widmann J., Dimitrijević I., Rados I., Banjari I.
 The Use of Wearable Technology in a Comprehensive Chronic Pain Management Programme

54. Poyil M.M., Bari M. D. N.
 Repurposing the Drug Duloxetine for its Antibacterial Activity Against Catheter Associated Urinary Tract Infections

 A Study of Iranian Traditional Dairy Beverage (Richal Shiri) and Investigation into Some Properties of its Isolated Lactic Acid Bacteria

 Cortical Thickness and Cortical Volume Measurements of the Cingulate Gyrius in Sudanese Young Adult Using BrainSuite

77. Shamssai G.H., Zakerkish M., Kashipazha D., Moradi M., Zakizadeh H.
 Comparison of Sural Nerve Amplitude and Sural/Radial Amplitude Ratio in Electrodagnosis of Patients with Neuropathy in Type 2 Diabetes

84. Sai Bhavana D., Shyamala G., Sujatha B.
 Accounts of Adverse Neonatal Effects in Preterm Prelabor Rupture of Membranes: Anticipating Maternal Platelet Indices and C-Reactive Protein as Effective Biomarkers

94. Zharean R.S., Ismudianto A., Hakamy, Rusli Y.R., Saud F.M., Rehatta N.M.
 Landmark Arks-Guided Compared to Ultrasound-Guided for Spinal Anesthesia in Elderly: Systematic-Review and Meta-Analyses of Randomized Controlled Trials

 The Role of Polyamines in the Regenerative Process of Skin Aerobic-Purulent Wounds

110. Fallahi M.J., Masnavi E., Hassanzadeh S.
 Effectiveness of Bedside Reminder on Reducing Laboratory Test and Costs at Intensive Care Units